博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
神经网络调参实战(一)—— 训练更多次数 & tensorboard & finetune
阅读量:2137 次
发布时间:2019-04-30

本文共 34634 字,大约阅读时间需要 115 分钟。

目标:将vggnet训练cifar-10数据集的精确度从70%提升至85%

 

 

现在的vggnet

import tensorflow as tfimport osimport pickleimport numpy as npCIFAR_DIR = "dataset/cifar-10-batches-py"print(os.listdir(CIFAR_DIR))def load_data(filename):    """read data from data file."""    with open(filename, 'rb') as f:        data = pickle.load(f, encoding='bytes')        return data[b'data'], data[b'labels']# tensorflow.Dataset.class CifarData:    def __init__(self, filenames, need_shuffle):        all_data = []        all_labels = []        for filename in filenames:            data, labels = load_data(filename)            all_data.append(data)            all_labels.append(labels)        self._data = np.vstack(all_data)        self._data = self._data / 127.5 - 1        self._labels = np.hstack(all_labels)        print(self._data.shape)        print(self._labels.shape)                self._num_examples = self._data.shape[0]        self._need_shuffle = need_shuffle        self._indicator = 0        if self._need_shuffle:            self._shuffle_data()                def _shuffle_data(self):        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]        p = np.random.permutation(self._num_examples)        self._data = self._data[p]        self._labels = self._labels[p]        def next_batch(self, batch_size):        """return batch_size examples as a batch."""        end_indicator = self._indicator + batch_size        if end_indicator > self._num_examples:            if self._need_shuffle:                self._shuffle_data()                self._indicator = 0                end_indicator = batch_size            else:                raise Exception("have no more examples")        if end_indicator > self._num_examples:            raise Exception("batch size is larger than all examples")        batch_data = self._data[self._indicator: end_indicator]        batch_labels = self._labels[self._indicator: end_indicator]        self._indicator = end_indicator        return batch_data, batch_labelstrain_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]train_data = CifarData(train_filenames, True)test_data = CifarData(test_filenames, False)x = tf.placeholder(tf.float32, [None, 3072])y = tf.placeholder(tf.int64, [None])# [None], eg: [0,5,6,3]x_image = tf.reshape(x, [-1, 3, 32, 32])# 32*32x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])# conv1: 神经元图, feature_map, 输出图像conv1_1 = tf.layers.conv2d(x_image,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_1')conv1_2 = tf.layers.conv2d(conv1_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_2')# 16 * 16pooling1 = tf.layers.max_pooling2d(conv1_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool1')conv2_1 = tf.layers.conv2d(pooling1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_1')conv2_2 = tf.layers.conv2d(conv2_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_2')# 8 * 8pooling2 = tf.layers.max_pooling2d(conv2_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool2')conv3_1 = tf.layers.conv2d(pooling2,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_1')conv3_2 = tf.layers.conv2d(conv3_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_2')# 4 * 4 * 32pooling3 = tf.layers.max_pooling2d(conv3_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool3')# [None, 4 * 4 * 32]flatten = tf.layers.flatten(pooling3)y_ = tf.layers.dense(flatten, 10)loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)# y_ -> sofmax# y -> one_hot# loss = ylogy_# indicespredict = tf.argmax(y_, 1)# [1,0,1,1,1,0,0,0]correct_prediction = tf.equal(predict, y)accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))with tf.name_scope('train_op'):    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)init = tf.global_variables_initializer()batch_size = 20train_steps = 10000test_steps = 100# train 10k: 73.4%with tf.Session() as sess:    sess.run(init)    for i in range(train_steps):        batch_data, batch_labels = train_data.next_batch(batch_size)        loss_val, acc_val, _ = sess.run(            [loss, accuracy, train_op],            feed_dict={                x: batch_data,                y: batch_labels})        if (i+1) % 100 == 0:            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f'                   % (i+1, loss_val, acc_val))        if (i+1) % 1000 == 0:            test_data = CifarData(test_filenames, False)            all_test_acc_val = []            for j in range(test_steps):                test_batch_data, test_batch_labels \                    = test_data.next_batch(batch_size)                test_acc_val = sess.run(                    [accuracy],                    feed_dict = {                        x: test_batch_data,                         y: test_batch_labels                    })                all_test_acc_val.append(test_acc_val)            test_acc = np.mean(all_test_acc_val)            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

训练10k次,accurancy在70%左右

 

1、训练更多次数

当训练100k次的时候,准确率会达到78%

 

 

2、用tensorboard进行可视化

 

添加后的代码

import tensorflow as tfimport osimport pickleimport numpy as npCIFAR_DIR = "dataset/cifar-10-batches-py"print(os.listdir(CIFAR_DIR))def load_data(filename):    """read data from data file."""    with open(filename, 'rb') as f:        data = pickle.load(f, encoding='bytes')        return data[b'data'], data[b'labels']# tensorflow.Dataset.class CifarData:    def __init__(self, filenames, need_shuffle):        all_data = []        all_labels = []        for filename in filenames:            data, labels = load_data(filename)            all_data.append(data)            all_labels.append(labels)        self._data = np.vstack(all_data)        self._data = self._data / 127.5 - 1        self._labels = np.hstack(all_labels)        print(self._data.shape)        print(self._labels.shape)                self._num_examples = self._data.shape[0]        self._need_shuffle = need_shuffle        self._indicator = 0        if self._need_shuffle:            self._shuffle_data()                def _shuffle_data(self):        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]        p = np.random.permutation(self._num_examples)        self._data = self._data[p]        self._labels = self._labels[p]        def next_batch(self, batch_size):        """return batch_size examples as a batch."""        end_indicator = self._indicator + batch_size        if end_indicator > self._num_examples:            if self._need_shuffle:                self._shuffle_data()                self._indicator = 0                end_indicator = batch_size            else:                raise Exception("have no more examples")        if end_indicator > self._num_examples:            raise Exception("batch size is larger than all examples")        batch_data = self._data[self._indicator: end_indicator]        batch_labels = self._labels[self._indicator: end_indicator]        self._indicator = end_indicator        return batch_data, batch_labelstrain_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]train_data = CifarData(train_filenames, True)test_data = CifarData(test_filenames, False)x = tf.placeholder(tf.float32, [None, 3072])y = tf.placeholder(tf.int64, [None])# [None], eg: [0,5,6,3]x_image = tf.reshape(x, [-1, 3, 32, 32])# 32*32x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])# conv1: 神经元图, feature_map, 输出图像conv1_1 = tf.layers.conv2d(x_image,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_1')conv1_2 = tf.layers.conv2d(conv1_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_2')# 16 * 16pooling1 = tf.layers.max_pooling2d(conv1_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool1')conv2_1 = tf.layers.conv2d(pooling1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_1')conv2_2 = tf.layers.conv2d(conv2_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_2')# 8 * 8pooling2 = tf.layers.max_pooling2d(conv2_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool2')conv3_1 = tf.layers.conv2d(pooling2,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_1')conv3_2 = tf.layers.conv2d(conv3_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_2')# 4 * 4 * 32pooling3 = tf.layers.max_pooling2d(conv3_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool3')# [None, 4 * 4 * 32]flatten = tf.layers.flatten(pooling3)y_ = tf.layers.dense(flatten, 10)loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)# y_ -> sofmax# y -> one_hot# loss = ylogy_# indicespredict = tf.argmax(y_, 1)# [1,0,1,1,1,0,0,0]correct_prediction = tf.equal(predict, y)accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))with tf.name_scope('train_op'):    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)#name是指定命名空间,为了防止冲突def variable_summary(var,name):    with tf.name_scope(name):        mean = tf.reduce_mean(var)#均值        with tf.name_scope('stdddev'):            stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))        tf.summary.scalar('mean',mean)        tf.summary.scalar('stddev',stddev)        tf.summary.scalar('min',tf.reduce_min(var))        tf.summary.scalar('max',tf.reduce_max(var))        tf.summary.histogram('histogram',var)#直方图with tf.name_scope('summary'):    variable_summary(conv1_1, 'conv1_1')    variable_summary(conv1_2, 'conv1_2')    variable_summary(conv2_1, 'conv2_1')    variable_summary(conv2_2, 'conv2_2')    variable_summary(conv3_1, 'conv3_1')    variable_summary(conv3_2, 'conv3_2')    #后面的merge_all会把我们写的这些都汇总起来loss_summary = tf.summary.scalar('loss',loss)accuracy_summary = tf.summary.scalar('accuracy',accuracy)#x_image在程序中被归一化成了(-1,1)的值,但是tf.summary.image用的图是0-255之间,是像素值#如果直接用的话会出问题,所以要先逆归一化一下source_image = (x_image + 1)*127.5inputs_summary = tf.summary.image('inputs_summary', source_image)merged_summary = tf.summary.merge_all()merged_summary_test = tf.summary.merge([loss_summary, accuracy_summary])LOG_DIR = '.'run_label = 'run_vgg_tensorboard'run_dir = os.path.join(LOG_DIR, run_label)if not os.path.exists(run_dir):    os.mkdir(run_dir)train_log_dir = os.path.join(run_dir,'train')test_log_dir = os.path.join(run_dir,'test')if not os.path.exists(train_log_dir):    os.mkdir(train_log_dir)init = tf.global_variables_initializer()batch_size = 20train_steps = 10000test_steps = 100output_summary_every_steps = 100# train 10k: 73.4%with tf.Session() as sess:    sess.run(init)    #训练集和测试集都分别进行输出,建立2个writer    train_writer = tf.summary.FileWriter(train_log_dir, sess.graph)     test_writer = tf.summary.FileWriter(test_log_dir)    fixed_test_batch_data, fixed_test_batch_labels = test_data.next_batch(batch_size)    for i in range(train_steps):        batch_data, batch_labels = train_data.next_batch(batch_size)        eval_ops = [loss,accuracy,train_op]        shoud_output_summary = ((i+1)%output_summary_every_steps == 0)        if shoud_output_summary:            eval_ops.append(merged_summary)        eval_ops_results = sess.run(            eval_ops,            feed_dict={                x: batch_data,                y: batch_labels})        loss_val, acc_val = eval_ops_results[0:2]        if shoud_output_summary:            train_summary_str = eval_ops_results[-1]            train_writer.add_summary(train_summary_str,i+1)            test_summary_str = sess.run([merged_summary_test],                                        feed_dict={                                            x:fixed_test_batch_data,                                            y:fixed_test_batch_labels,                                        })[0]            test_writer.add_summary(test_summary_str,i+1)        if (i+1) % 100 == 0:            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f'                   % (i+1, loss_val, acc_val))        if (i+1) % 1000 == 0:            test_data = CifarData(test_filenames, False)            all_test_acc_val = []            for j in range(test_steps):                test_batch_data, test_batch_labels \                    = test_data.next_batch(batch_size)                test_acc_val = sess.run(                    [accuracy],                    feed_dict = {                        x: test_batch_data,                         y: test_batch_labels                    })                all_test_acc_val.append(test_acc_val)            test_acc = np.mean(all_test_acc_val)            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

 

3、fine-tune实战

不使用随机初始化来初始化参数,而是使用之前已经train好的模型来做初始化

 

步骤:

①保存模型

②恢复模型 restore models checkpoint (也就是断点恢复)

③keep some layers fixed   冻结指定层

   finetune是保存底层的参数值不变,只改变上层的参数值

 

 

import tensorflow as tfimport osimport pickleimport numpy as npCIFAR_DIR = "dataset/cifar-10-batches-py"print(os.listdir(CIFAR_DIR))def load_data(filename):    """read data from data file."""    with open(filename, 'rb') as f:        data = pickle.load(f, encoding='bytes')        return data[b'data'], data[b'labels']# tensorflow.Dataset.class CifarData:    def __init__(self, filenames, need_shuffle):        all_data = []        all_labels = []        for filename in filenames:            data, labels = load_data(filename)            all_data.append(data)            all_labels.append(labels)        self._data = np.vstack(all_data)        self._data = self._data / 127.5 - 1        self._labels = np.hstack(all_labels)        print(self._data.shape)        print(self._labels.shape)                self._num_examples = self._data.shape[0]        self._need_shuffle = need_shuffle        self._indicator = 0        if self._need_shuffle:            self._shuffle_data()                def _shuffle_data(self):        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]        p = np.random.permutation(self._num_examples)        self._data = self._data[p]        self._labels = self._labels[p]        def next_batch(self, batch_size):        """return batch_size examples as a batch."""        end_indicator = self._indicator + batch_size        if end_indicator > self._num_examples:            if self._need_shuffle:                self._shuffle_data()                self._indicator = 0                end_indicator = batch_size            else:                raise Exception("have no more examples")        if end_indicator > self._num_examples:            raise Exception("batch size is larger than all examples")        batch_data = self._data[self._indicator: end_indicator]        batch_labels = self._labels[self._indicator: end_indicator]        self._indicator = end_indicator        return batch_data, batch_labelstrain_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]train_data = CifarData(train_filenames, True)test_data = CifarData(test_filenames, False)x = tf.placeholder(tf.float32, [None, 3072])y = tf.placeholder(tf.int64, [None])# [None], eg: [0,5,6,3]x_image = tf.reshape(x, [-1, 3, 32, 32])# 32*32x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])# conv1: 神经元图, feature_map, 输出图像conv1_1 = tf.layers.conv2d(x_image,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_1')conv1_2 = tf.layers.conv2d(conv1_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv1_2')# 16 * 16pooling1 = tf.layers.max_pooling2d(conv1_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool1')conv2_1 = tf.layers.conv2d(pooling1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_1')conv2_2 = tf.layers.conv2d(conv2_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv2_2')# 8 * 8pooling2 = tf.layers.max_pooling2d(conv2_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool2')conv3_1 = tf.layers.conv2d(pooling2,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_1')conv3_2 = tf.layers.conv2d(conv3_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_2')# 4 * 4 * 32pooling3 = tf.layers.max_pooling2d(conv3_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool3')# [None, 4 * 4 * 32]flatten = tf.layers.flatten(pooling3)y_ = tf.layers.dense(flatten, 10)loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)# y_ -> sofmax# y -> one_hot# loss = ylogy_# indicespredict = tf.argmax(y_, 1)# [1,0,1,1,1,0,0,0]correct_prediction = tf.equal(predict, y)accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))with tf.name_scope('train_op'):    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)#name是指定命名空间,为了防止冲突def variable_summary(var,name):    with tf.name_scope(name):        mean = tf.reduce_mean(var)#均值        with tf.name_scope('stdddev'):            stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))        tf.summary.scalar('mean',mean)        tf.summary.scalar('stddev',stddev)        tf.summary.scalar('min',tf.reduce_min(var))        tf.summary.scalar('max',tf.reduce_max(var))        tf.summary.histogram('histogram',var)#直方图with tf.name_scope('summary'):    variable_summary(conv1_1, 'conv1_1')    variable_summary(conv1_2, 'conv1_2')    variable_summary(conv2_1, 'conv2_1')    variable_summary(conv2_2, 'conv2_2')    variable_summary(conv3_1, 'conv3_1')    variable_summary(conv3_2, 'conv3_2')    #后面的merge_all会把我们写的这些都汇总起来loss_summary = tf.summary.scalar('loss',loss)accuracy_summary = tf.summary.scalar('accuracy',accuracy)#x_image在程序中被归一化成了(-1,1)的值,但是tf.summary.image用的图是0-255之间,是像素值#如果直接用的话会出问题,所以要先逆归一化一下source_image = (x_image + 1)*127.5inputs_summary = tf.summary.image('inputs_summary', source_image)merged_summary = tf.summary.merge_all()merged_summary_test = tf.summary.merge([loss_summary, accuracy_summary])LOG_DIR = '.'run_label = 'run_vgg_tensorboard'run_dir = os.path.join(LOG_DIR, run_label)if not os.path.exists(run_dir):    os.mkdir(run_dir)train_log_dir = os.path.join(run_dir,'train')test_log_dir = os.path.join(run_dir,'test')if not os.path.exists(train_log_dir):    os.mkdir(train_log_dir)#将模型保存在文件中model_dir = os.path.join(run_dir,'model')if not os.path.exists(model_dir):    os.mkdir(model_dir)#saver就是得到的一个文件句柄,可以帮我们把tensorflow训练过程中的某个快照(包含了所有参数和状态)#给保存到文件中saver = tf.train.Saver()init = tf.global_variables_initializer()batch_size = 20train_steps = 10000test_steps = 100output_summary_every_steps = 100output_model_every_steps = 100# train 10k: 73.4%with tf.Session() as sess:    sess.run(init)    #训练集和测试集都分别进行输出,建立2个writer    train_writer = tf.summary.FileWriter(train_log_dir, sess.graph)     test_writer = tf.summary.FileWriter(test_log_dir)    fixed_test_batch_data, fixed_test_batch_labels = test_data.next_batch(batch_size)    for i in range(train_steps):        batch_data, batch_labels = train_data.next_batch(batch_size)        eval_ops = [loss,accuracy,train_op]        shoud_output_summary = ((i+1)%output_summary_every_steps == 0)        if shoud_output_summary:            eval_ops.append(merged_summary)        eval_ops_results = sess.run(            eval_ops,            feed_dict={                x: batch_data,                y: batch_labels})        loss_val, acc_val = eval_ops_results[0:2]        if shoud_output_summary:            train_summary_str = eval_ops_results[-1]            train_writer.add_summary(train_summary_str,i+1)            test_summary_str = sess.run([merged_summary_test],                                        feed_dict={                                            x:fixed_test_batch_data,                                            y:fixed_test_batch_labels,                                        })[0]            test_writer.add_summary(test_summary_str,i+1)        if (i+1) % 100 == 0:            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f'                   % (i+1, loss_val, acc_val))        if (i+1) % 1000 == 0:            test_data = CifarData(test_filenames, False)            all_test_acc_val = []            for j in range(test_steps):                test_batch_data, test_batch_labels \                    = test_data.next_batch(batch_size)                test_acc_val = sess.run(                    [accuracy],                    feed_dict = {                        x: test_batch_data,                         y: test_batch_labels                    })                all_test_acc_val.append(test_acc_val)            test_acc = np.mean(all_test_acc_val)            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))        if (i+1) % output_model_every_steps == 0:            saver.save(sess, os.path.join(model_dir,'ckp-%05d' %(i+1)))            print('model saved to ckp-%05d' %  (i+1))

ckp是checkpoint的简称

 

我们让模型停在第6000次训练,acc大概在65%-70%

tensorflow会自动保存最近的5个模型,把先前的给删掉

  • data中存储的是参数的数据
  • index中存储的是索引信息
  • meta中存储的是元信息

 

下面来看如何去恢复模型

运行后可以看到,一上来模型的accurancy就很高,这就是使用了前面模型训练的结果

 

第三步,keep some layers fixed 冻结指定层

在模型的计算图里面实现

trainable默认是True,如果设为False,那么这一层layer里面的参数就不参与训练

pytorch中就是 requires_grad=False

我们先把前两层给设成False

运行仍然是可以正常运行的

 

import tensorflow as tfimport osimport pickleimport numpy as npCIFAR_DIR = "dataset/cifar-10-batches-py"print(os.listdir(CIFAR_DIR))def load_data(filename):    """read data from data file."""    with open(filename, 'rb') as f:        data = pickle.load(f, encoding='bytes')        return data[b'data'], data[b'labels']# tensorflow.Dataset.class CifarData:    def __init__(self, filenames, need_shuffle):        all_data = []        all_labels = []        for filename in filenames:            data, labels = load_data(filename)            all_data.append(data)            all_labels.append(labels)        self._data = np.vstack(all_data)        self._data = self._data / 127.5 - 1        self._labels = np.hstack(all_labels)        print(self._data.shape)        print(self._labels.shape)                self._num_examples = self._data.shape[0]        self._need_shuffle = need_shuffle        self._indicator = 0        if self._need_shuffle:            self._shuffle_data()                def _shuffle_data(self):        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]        p = np.random.permutation(self._num_examples)        self._data = self._data[p]        self._labels = self._labels[p]        def next_batch(self, batch_size):        """return batch_size examples as a batch."""        end_indicator = self._indicator + batch_size        if end_indicator > self._num_examples:            if self._need_shuffle:                self._shuffle_data()                self._indicator = 0                end_indicator = batch_size            else:                raise Exception("have no more examples")        if end_indicator > self._num_examples:            raise Exception("batch size is larger than all examples")        batch_data = self._data[self._indicator: end_indicator]        batch_labels = self._labels[self._indicator: end_indicator]        self._indicator = end_indicator        return batch_data, batch_labelstrain_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]train_data = CifarData(train_filenames, True)test_data = CifarData(test_filenames, False)x = tf.placeholder(tf.float32, [None, 3072])y = tf.placeholder(tf.int64, [None])# [None], eg: [0,5,6,3]x_image = tf.reshape(x, [-1, 3, 32, 32])# 32*32x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])# conv1: 神经元图, feature_map, 输出图像conv1_1 = tf.layers.conv2d(x_image,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           trainable=False,                           name = 'conv1_1')conv1_2 = tf.layers.conv2d(conv1_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           trainable=False,                           name = 'conv1_2')# 16 * 16pooling1 = tf.layers.max_pooling2d(conv1_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool1')conv2_1 = tf.layers.conv2d(pooling1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           trainable=False,                           name = 'conv2_1')conv2_2 = tf.layers.conv2d(conv2_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           trainable=False,                           name = 'conv2_2')# 8 * 8pooling2 = tf.layers.max_pooling2d(conv2_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool2')conv3_1 = tf.layers.conv2d(pooling2,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_1')conv3_2 = tf.layers.conv2d(conv3_1,                           32, # output channel number                           (3,3), # kernel size                           padding = 'same',                           activation = tf.nn.relu,                           name = 'conv3_2')# 4 * 4 * 32pooling3 = tf.layers.max_pooling2d(conv3_2,                                   (2, 2), # kernel size                                   (2, 2), # stride                                   name = 'pool3')# [None, 4 * 4 * 32]flatten = tf.layers.flatten(pooling3)y_ = tf.layers.dense(flatten, 10)loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)# y_ -> sofmax# y -> one_hot# loss = ylogy_# indicespredict = tf.argmax(y_, 1)# [1,0,1,1,1,0,0,0]correct_prediction = tf.equal(predict, y)accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))with tf.name_scope('train_op'):    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)#name是指定命名空间,为了防止冲突def variable_summary(var,name):    with tf.name_scope(name):        mean = tf.reduce_mean(var)#均值        with tf.name_scope('stdddev'):            stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))        tf.summary.scalar('mean',mean)        tf.summary.scalar('stddev',stddev)        tf.summary.scalar('min',tf.reduce_min(var))        tf.summary.scalar('max',tf.reduce_max(var))        tf.summary.histogram('histogram',var)#直方图with tf.name_scope('summary'):    variable_summary(conv1_1, 'conv1_1')    variable_summary(conv1_2, 'conv1_2')    variable_summary(conv2_1, 'conv2_1')    variable_summary(conv2_2, 'conv2_2')    variable_summary(conv3_1, 'conv3_1')    variable_summary(conv3_2, 'conv3_2')    #后面的merge_all会把我们写的这些都汇总起来loss_summary = tf.summary.scalar('loss',loss)accuracy_summary = tf.summary.scalar('accuracy',accuracy)#x_image在程序中被归一化成了(-1,1)的值,但是tf.summary.image用的图是0-255之间,是像素值#如果直接用的话会出问题,所以要先逆归一化一下source_image = (x_image + 1)*127.5inputs_summary = tf.summary.image('inputs_summary', source_image)merged_summary = tf.summary.merge_all()merged_summary_test = tf.summary.merge([loss_summary, accuracy_summary])LOG_DIR = '.'run_label = 'run_vgg_tensorboard'run_dir = os.path.join(LOG_DIR, run_label)if not os.path.exists(run_dir):    os.mkdir(run_dir)train_log_dir = os.path.join(run_dir,'train')test_log_dir = os.path.join(run_dir,'test')if not os.path.exists(train_log_dir):    os.mkdir(train_log_dir)#将模型保存在文件中model_dir = os.path.join(run_dir,'model')if not os.path.exists(model_dir):    os.mkdir(model_dir)#saver就是得到的一个文件句柄,可以帮我们把tensorflow训练过程中的某个快照(包含了所有参数和状态)#给保存到文件中saver = tf.train.Saver()#指定要恢复的checkpoint的名字,例如这里我们恢复第6000次的model_name = 'ckp-06000'model_path = os.path.join(model_dir, model_name)init = tf.global_variables_initializer()batch_size = 20train_steps = 10000test_steps = 100output_summary_every_steps = 100output_model_every_steps = 100# train 10k: 73.4%with tf.Session() as sess:    sess.run(init)    #训练集和测试集都分别进行输出,建立2个writer    train_writer = tf.summary.FileWriter(train_log_dir, sess.graph)     test_writer = tf.summary.FileWriter(test_log_dir)    fixed_test_batch_data, fixed_test_batch_labels = test_data.next_batch(batch_size)        #判断模型是否存在    if os.path.exists(model_path + '.index'):        saver.restore(sess, model_path)        print('model restored from %s' % model_path)    else:        print('model %s does not exist' % model_path)    for i in range(train_steps):        batch_data, batch_labels = train_data.next_batch(batch_size)        eval_ops = [loss,accuracy,train_op]        shoud_output_summary = ((i+1)%output_summary_every_steps == 0)        if shoud_output_summary:            eval_ops.append(merged_summary)        eval_ops_results = sess.run(            eval_ops,            feed_dict={                x: batch_data,                y: batch_labels})        loss_val, acc_val = eval_ops_results[0:2]        if shoud_output_summary:            train_summary_str = eval_ops_results[-1]            train_writer.add_summary(train_summary_str,i+1)            test_summary_str = sess.run([merged_summary_test],                                        feed_dict={                                            x:fixed_test_batch_data,                                            y:fixed_test_batch_labels,                                        })[0]            test_writer.add_summary(test_summary_str,i+1)        if (i+1) % 100 == 0:            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f'                   % (i+1, loss_val, acc_val))        if (i+1) % 1000 == 0:            test_data = CifarData(test_filenames, False)            all_test_acc_val = []            for j in range(test_steps):                test_batch_data, test_batch_labels \                    = test_data.next_batch(batch_size)                test_acc_val = sess.run(                    [accuracy],                    feed_dict = {                        x: test_batch_data,                         y: test_batch_labels                    })                all_test_acc_val.append(test_acc_val)            test_acc = np.mean(all_test_acc_val)            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))        if (i+1) % output_model_every_steps == 0:            saver.save(sess, os.path.join(model_dir,'ckp-%05d' %(i+1)))            print('model saved to ckp-%05d' %  (i+1))

 

总结一下

finetune可以根据checkpoint的来源不一样分成两部分,也就是一共有两个功能

①如果是别人的模型,别人的checkpoint

      我们构建了一个跟他相对应的网络结构,用他的参数初始化这个结构,然后再保存一些值不变,去调试

      这就是去微调别人已经train好的一个网络

②model是我自己的,但是中途没train好就停止了,然后断点续传

 

 

       我们可能在其他的一些实现里面看到它们的finetuning可能会比较简单,这是因为他们做了一些封装。不管他们外层的实现是什么样的,他们的底层的实现肯定是我们说的这几步

 

转载地址:http://flygf.baihongyu.com/

你可能感兴趣的文章
数据类型 java转换
查看>>
"NetworkError: 400 Bad Request - http://172.16.47.117:8088/rhip/**/####t/approval?date=976
查看>>
mybatis 根据 数据库表 自动生成 实体
查看>>
win10将IE11兼容ie10
查看>>
checkbox设置字体颜色
查看>>
第一篇 HelloWorld.java重新学起
查看>>
ORACLE表空间扩张
查看>>
orcal 循环执行sql
查看>>
web.xml配置监听器,加载数据库信息配置文件ServletContextListener
查看>>
结构型模式之桥接模式(Bridge)
查看>>
行为型模式之状态模式(State)
查看>>
行为型模式之策略模式(Strategy)
查看>>
行为型模式之模板方法模式(TemplateMethod)
查看>>
行为型模式之访问者模式(Visitor)
查看>>
大小端详解
查看>>
source insight使用方法简介
查看>>
<stdarg.h>头文件的使用
查看>>
C++/C 宏定义(define)中# ## 的含义 宏拼接
查看>>
Git安装配置
查看>>
linux中fork()函数详解
查看>>